首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   33篇
  国内免费   34篇
电工技术   5篇
综合类   92篇
化学工业   483篇
金属工艺   100篇
机械仪表   16篇
建筑科学   1篇
矿业工程   1篇
能源动力   59篇
轻工业   45篇
水利工程   1篇
石油天然气   2篇
无线电   72篇
一般工业技术   289篇
冶金工业   12篇
原子能技术   8篇
自动化技术   29篇
  2023年   77篇
  2022年   43篇
  2021年   73篇
  2020年   85篇
  2019年   53篇
  2018年   18篇
  2017年   32篇
  2016年   38篇
  2015年   58篇
  2014年   85篇
  2013年   137篇
  2012年   119篇
  2011年   83篇
  2010年   69篇
  2009年   79篇
  2008年   24篇
  2007年   29篇
  2006年   24篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   21篇
  2001年   20篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1996年   5篇
  1995年   1篇
排序方式: 共有1215条查询结果,搜索用时 453 毫秒
1.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
2.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
3.
Absorbents with “tree-like” structures, which were composed of hollow porous carbon fibers (HPCFs) acting as “trunk” structures, carbon nanotubes (CNTs) as “branch” structures and magnetite (Fe3O4) nanoparticles playing the role of “fruit” structures were prepared by chemical vapor deposition technique and chemical reaction. Microwave reflection loss, permittivity and permeability of Fe3O4–CNTs–HPCFs composites were investigated in the frequency range of 2–18 GHz. It was proven that prepared absorbents possessed the excellent electromagnetic wave absorbing performances. The bandwidth with a reflection loss less than −15 dB covers a wide frequency range from 10.2 to 18 GHz with the thickness of 1.5–3.0 mm, and the minimum reflection loss is −50.9 dB at 14.03 GHz with a 2.5 mm thick sample layer. Microwave absorbing mechanism of the Fe3O4–CNTs–HPCFs composites is concluded as dielectric polarization and the synergetic interactions exist between Fe3O4 and CNTs–HPCFs.  相似文献   
4.
The visible light driven Bi2MoO6 photocatalyst doped with different contents of Ag nanoparticles was successfully synthesized by a combination of hydrothermal and sonochemical methods. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM) and UV–visible spectroscopy to investigate crystalline structure, morphology, composition and photocatalytic properties. XRD patterns and TEM images of the samples revealed pure phase orthorhombic Bi2MoO6 nanoplates without any detection of Ag dopant due to its low concentration and very tiny particle size. TEM images showed that Ag nanoparticles with the size of 10–15 nm were dispersed randomly on the surface of Bi2MoO6. The XPS analysis of Ag/Bi2MoO6 nanocomposites revealed the presence of additional metallic Ag. Photocatalytic activities of the Ag/Bi2MoO6 nanocomposites were evaluated by determining the degradation of rhodamine B (RhB) under visible light radiation. In this research, the 10 wt% Ag/Bi2MoO6 nanocomposites showed the best photocatalytic activity. The results suggest that the dispersion of Ag nanoparticles on the surface of Bi2MoO6 significantly enhances its photocatalytic activity.  相似文献   
5.
《CIRP Annals》2020,69(1):33-36
The vast Carbon Fiber Reinforced Polymer (CFRP) waste accumulated is pressing for its recycling. A novel recycling approach, which integrated carbon fiber reclamation and composite additive manufacturing, is proposed to process the CFRP waste into three Dimensional (3D) parts. In the experiments, the CFRP waste was recycled by supercritical n-butanol to yield reclaimed Carbon Fibers (rCFs). The rCFs were ground by a ball mill, mixed with Poly-Ether-Ether-Ketone (PEEK) powder and then extruded to the composite filament. The filament was fed to the Fused Deposition Modeling (FDM) printer to fabricate 3D parts. Mechanical and electrical properties of the parts were investigated and compared with that of pure PEEK. The results illustrate that the additive manufacturing-based approach offers a potential strategy to reuse the CFRP waste and rapidly fabricate the rCF reinforced plastics with complex geometry and function.  相似文献   
6.
We present a straightforward method via sol-gel process using polyethylene glycol (PEG) as phase separation inducer to prepare zirconium carbide/silicon carbide (ZrC/SiC) porous monoliths. Organic/inorganic hybrid gels are prepared using zirconium oxychloride, furfuryl alcohol, and tetraethyl orthosilicate as major starting materials. In the presence of PEG, crack-free hybrid monoliths are obtained by drying the wet gels under ambient pressure, whereas in the absence of PEG, the wet gels break into pieces as expected. PEG plays a key role in maintaining the macroscopic shape of the monoliths. After ceramization at 1300–1500?°C, ZrC/SiC porous monoliths are obtained. SEM and mercury intrusion porosimetry data show that PEG also has strong influence on the microstructures of the monoliths. The compressive strengths of the ceramic monoliths are in the range of 0.3 to 0.7?MPa. And their compressive behavior starts to differ due to the changes in their microstructures, especially the pore structure.  相似文献   
7.
In this paper, polyborosilazane precursor was synthesied from HMDZ, HSiCl3, BCl3 and CH3NH2 using a multistep method. By controlling the storage conditions, parts of the polyborosilazane fibers were hydrolyzed. FT-IR, NMR, XRD, TEM and monofilament tensile strength test were employed to study the effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. FT-IR and NMR results indicate that Si-N group in PBSZ reacts with H2O to form Si-O-Si group. After pyrolysis reaction at 1400℃, Si-O-Si group will finally transformed into highly ordered cristobalite and β-quartz, resulting in formation of the wrinkled surface of the obtained SiBN ceramic fiber. The strip-like defects on fiber surface, according to monofilament tensile strength test, had a significant effect on mechanical property of the obtained SiBN ceramic fiber and caused no increase in fiber tensile strength of hydrolytic polyborosilazane fiber before and after pyrolytic process.  相似文献   
8.
This paper discusses the effects of the grinding-induced cyclic heating on the properties of the hardened layer in a plunge cylindrical grinding process on the high strength steel EN26. It was found that a multi-pass grinding brings about a uniform and continuous hardened layer along the circumference of the cylindrical workpiece. An increase of the number of grinding passes, leads to a thicker layer of hardening, a larger compressive residual stress and a deeper plastic deformation zone. Within the plastic deformation zone, the martensitic grains are refined by the thermo-mechanical loading, giving rise to a hardness of 12.5% higher than that from a conventional martensitic transformation. The coupled effects of heat accumulation and wheel wear in the multi-pass grinding are the main causes for the thickening of the hardened layer. A too small infeed per workpiece revolution would result in insufficient grinding heat, and in turn, bring about an undesirable tempered hardened layer and a reduction of its hardness.  相似文献   
9.
Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, poor water absorption capacity of the hydrogel adsorbents would restrict on the expose of adsorption sites to the targeted subjects, causing undesirable removal ratio (RR) especially for metal ions at trace level. Thereby, the reported hydrogel adsorbents mainly focus on the removal of high content but not the trace level of metal ions so far. In this work, poly(acrylamide) (PAM)/poly(acrylic acid) (PAA)/Ca(OH)2 composite hydrogel is applied to adsorb trace metal ions. Swelling ratio of such PAM/PAA/Ca(OH)2 gel reaches 2,530 g/g, resulting in effective exposure of active sites and further expected RR for trace metal ions. The RRs of such adsorbent for Cu2+ (initial concentration C0 = 0.064 mg/L), Al3+ (C0 = 0.27 mg/L), Co2+ (C0 = 0.59 mg/L), Cr6+ (C0 = 0.52 mg/L), Mn2+ (C0 = 0.55 mg/L), Ni2+ (C0 = 0.59 mg/L), Zn2+ (C0 = 0.65 mg/L), Ag+ (C0 = 1.08 mg/L), and La3+ (C0 = 1.39 mg/L) are 56.6, 80.8, 41.3, 29.3, 34.6, 44.6, 55.9, 45.8, and 35.5%, respectively. This work broadens the application of hydrogel adsorbent for eliminating trace metal ions from polluted water.  相似文献   
10.
The effect of micro-blasting on the tribological properties of TiN/MT-TiCN/Al2O3/TiCNO coatings was studied. The multilayer coatings were deposited on cemented carbides by chemical vapor deposition. The microstructure, mechanical and tribological properties were investigated using X-ray diffraction, scanning electron microscopy (SEM), nano-mechanical testing system, scratch tester and reciprocating tribometer. The results show that micro-blasting significantly reduces the surface roughness and converts the residual tensile stress of Ti(C,N,O) top-layer and Al2O3 layer into compressive stress. Affected by the residual compressive stress, the hardness and adhesion strength are increased. More importantly, the friction coefficient is decreased attributed to the decreased surface roughness and improved hardness. Also, the wear resistance of micro-blasted TiN/MT-TiCN/Al2O3/TiCNO is superior due to higher hardness of Ti(C,N,O) top-layer, Al2O3 layer and adhesion strength of coatings. Especially for the total sliding time of 2 h, the wear volume and wear rate of micro-blasted coatings are 69.4% of as-deposited coatings, because micro-blasting helps to increase the adhesion strength and micro-cracking resistance, which play important roles in the improvement of wear resistance. Micro-blasting has a positive effect on the friction and wear properties of TiN/MT-TiCN/Al2O3/TiCNO multilayer coatings since the adverse impact of top-layer thinning is offset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号